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I. INTRODUCTION

In an inertial confinement fusion (ICF) experiment, an
array of high-powered lasers is focused onto a small fuel
capsule, rapidly heating its outer surface. The intense energy
deposition drives material ablation, which in turn produces
a compressive reaction force that implodes the capsule to
extreme densities and temperatures. During this process, the
transport of thermal energy through the capsule plays a critical
role: it influences the rate of ablation, heating of the fuel, and
ultimately the fusion yield. Modeling the interplay between
laser heating, material properties, and heat diffusion is a first
step for predicting the influence each parameter has on the
success of an ICF experiment.

Fig. 1. Laser irradiation interacts with the capsule, ablating the outer shell
and generating a heat flux that diffuses throughout the domain.

In this report, I construct a simplified model of the heating
process using the one-dimensional heat equation with a pulsed
boundary flux representing laser energy deposition (Fig. 1).
While far from the full complexity of radiation—-hydrodynamics
simulations, this model captures the essential process of ther-
mal diffusion into a solid medium under transient, high-
intensity loading. I employ parallelization techniques including
shared-memory and GPU accelerations to boost computational
performance. Recognizing that high-fidelity simulations of
the phenomena can be computationally expensive, this report
presents a computational framework to enable optimization. I
employ a Gaussian process for uncertainty quantification, and
train a neural network for fast evaluations of the parameter
space.

In essence, the problem serves as a controlled compu-
tational testbed for modern parallel programming, surrogate
modeling and machine learning techniques. It builds upon the
principal skills taught at the Computational Physics School for
Fusion Research (CPS-FR), which was held from August 18
to August 23 2025 at the MIT Plasma Science and Fusion
Center.

II. A SIMPLE LASER-DRIVEN HEAT MODEL

Modeling laser-driven inertial confinement fusion involves
a highly complex interplay of radiation transport, mate-
rial response, and hydrodynamic motion. In reality, laser
light interacts with matter through processes such as inverse
bremsstrahlung absorption, scattering, and plasma generation,
all of which evolve dynamically in space and time. Capturing
these effects in full requires radiation-hydrodynamics simu-
lations with multiple coupled equations. For the purpose of
developing a computational testbed, however, several assump-
tions are adopted to reduce the problem to a simplified model.

First, we assume that the deposited laser energy can be
represented as a boundary flux condition at the capsule surface,
neglecting volumetric absorption and plasma effects. This cap-
tures the essential role of the laser as an external driver without
resolving detailed light-matter coupling. Second, we restrict
attention to one spatial dimension which allows heat transport
to be modeled as a purely diffusive process of radial conduc-
tion into the target. Third, we assume material properties such
as conductivity, density, and heat capacity remain constant in
time and independent of temperature. While in reality they
vary under high-energy conditions, this approximation isolates
the effect of parameter changes. These assumptions yield a
tractable diffusion model suitable for numerical exploration.
While these assumptions allow for a compact model, they
omit several key aspects of laser—matter interaction, radiative
transport, hydrodynamic motion and more, making this testbed
highly unsuitable for design studies.

A. Governing Equation

The thermal response of the material is modeled by the
one-dimensional heat equation,

0T (,t) 0T (x,t)
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where T'(z,t) is the temperature, L is the domain length,

and a = % is the thermal diffusivity, with & the thermal
conductivity, p the density, and c, the heat capacity.

O<x<L,t>0, (1)



1) Initial Condition: At the beginning of the simulation, the
material is assumed to be at a uniform ambient temperature
Ty = 400 K:

T(z,0) =Ty, 0<z<L. 2)
2) Boundary Conditions: At the outer shell boundary, a
pulsed laser flux is applied for a duration ¢, which is modeled
here as a Dirichlet condition:
Q
T0,t) +-—, 0<t<t,,
T(0,t) = Az 3)

T(0,1), t>t,,

where () represents the amplitude of the deposited laser energy
per unit time, and Az is the spatial grid spacing.

At the innermost boundary, a zero-flux boundary represents
an insulated boundary where no heat crosses the surface,
allowing the temperature at the boundary to change freely in
response to the interior temperature distribution:
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B. Numerical Discretization

We discretize the heat equation (Eq. 1) using an explicit
finite difference method. The spatial domain is divided into n
equally spaced grid points with spacing Ax = %ﬂ Time is
discretized into uniform steps of size At. The temperature at

spatial index i and timestep k is denoted by TF ~ T'(x;,ty),

where z; = ¢Ax and ¢, = kAt. A second-order central
difference is used to approximate the spatial derivative,
9*T Tk, —2TF + TF
7($i7tk) ~ i1 : Z+17 (5)
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while a forward Euler scheme is applied in time,
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Substituting Eq. 5 and 6 into the governing Eq. 1 yields
the explicit update rule
i =TF +r (Tilil — 2T} + T'IfH) )

(2

i=1,...,n (7)

where the stability parameter is r = (Zﬁ)’;. For stability of the
explicit scheme, it is required that r < %

C. PFarallelization

To accelerate the numerical solution, I parallelize the
method using OpenMP for both CPU multithreading and
GPU acceleration [1] [2]. The discretization of the spatial
domain results in a set of algebraic equations that must be
solved at each time step. By exploiting the independence
of the computations across spatial grid points, I divide the
grid points among threads for each time step. Especially on
shared-memory CPUs, this allows for simultaneous updates
of different portions of the grid. For GPU acceleration, I
utilize OpenMP target offloading to transfer the computa-
tionally intensive kernel of the spatial domain to the GPU.
Memory transfers between host and device were minimized

to optimize performance. This approach enables scalable per-
formance across different hardware architectures and allows
efficient simulation of heat propagation in large domains. The
time-stepping update loop is not parallelized due to its strong
dependence on prior time steps, and contributes largely to the
serial fraction of the algorithm.

III. SIMULATION RESULTS
A. Physical Insights

To capture the relationship between laser heating, heat
conduction, and energy deposition inside the capsule, I present
generated data from the physical model presented in the
previous sections. With varying thermal diffusivity « and laser-
induced heat flux at the outer boundary, the results describe
the temperature evolution throughout the domain by sampling
the temperature at the outermost location Ty, as well as
the innermost temperature 7},. I consider the four sets of
relationships a versus Ty, flux versus Typey, o versus Ty,
and flux versus Txe to identify systematic patterns. For a
range in thermal diffusivity «, values were chosen to represent
a wide array of materials, including polymers (o ~ 107%),
diamond (o ~ 107%), metals (o ~ 10~%), and materials at
high temperatures (o =~ 10~3). The fluxes are varied between
1 and 10°81,
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Fig. 2. Evolution of the outer ablator temperature with respect to thermal
diffusivity «

When considering the dependence of Ty, on «, a clear
inverse relationship emerges (Fig. 2). At fixed flux values, large
values of a correspond to relatively modest outer shell tem-
peratures, whereas small « leads to extremely high Ti,.y. For
instance, in the lowest diffusivity regime (o < 10’7%2), the
outer shell reaches values on the order of 107-10% K. By con-
trast, at & ~ 1073, Tihen remains orders of magnitude smaller
under comparable conditions. This behavior is explained by
the fact that high diffusivity allows deposited energy to spread
quickly into the bulk material, preventing surface overheating,
while low diffusivity traps heat near the surface, producing
large temperature gradients. The observed monotonic decrease
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Fig. 3. Evolution of the outer ablator temperature with respect to a laser-
induced heat flux

of Tyhen With increasing « is fully consistent with classical
diffusion theory.

The behavior of Ty, as a function of incident flux further
reinforces this interpretation (Fig. 3). At fixed «, the shell
temperature grows nearly linearly with flux, as expected when
more power is delivered to the capsule. However, the slope of
this growth depends strongly on diffusivity. For large «, the
rise is smooth and proportional, with Ty, tracking flux across
several orders of magnitude. For small «, however, the shell
temperature climbs steeply, with heat rapidly accumulating
at the surface. For example, at o = 1078, Ty rises from
approximately 10% K at flux = 1 to nearly 107 K at flux
= 10%, illustrating the inability of the material to redistribute
energy inward. Thus, while flux sets the overall scale of
heating, o determines whether this heating remains localized
or propagates inward effectively.
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Fig. 4. Evolution of the inner capsule temperature with respect to thermal
diffusivity «

Turning attention to the inner fuel temperature Tf, the
results reveal a much more nuanced dependence on « (Fig.
4). At high «, the inner temperature closely follows the
outer shell, with Tyen =~ Tre. This indicates that efficient
conduction equilibrates the capsule, allowing the core to share
in the energy deposited at the surface. At intermediate «
(10%-107?), however, a divergence between shell and core
temperatures emerges. The core lags significantly behind the
shell, reaching only a fraction of the surface temperature.
In addition, one observes a nonlinear relationship among
different flux values in this regime. At very low a (< 1079),
the core remains essentially at its baseline of ~ 400 K,
regardless of how high the shell climbs. This plateau of 7§, at
low diffusivity illustrates a complete bottleneck effect, where
conduction is insufficient to carry meaningful energy into the
capsule interior.
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Fig. 5. Evolution of the inner capsule temperature with respect to a laser-

induced heat flux

The flux dependence of T, further clarifies the transport-
limited nature of core heating in Figure 5. At high diffusivity,
Thel increases steadily with flux, closely mirroring the shell
response. For example, with o ~ 1073, both Ty and Ty
rise together from the hundreds into the millions of kelvin
range as flux increases by four orders of magnitude. At lower
a, however, this coupling breaks down: the inner temperature
saturates, while the shell continues to climb. Thus, increasing
flux without sufficient diffusivity yields diminishing returns for
core heating.

The physical origins of these behaviors can be understood
by recalling that thermal diffusivity is defined as o = %,
where k is the thermal conductivity, p is density, and ¢, is
specific heat capacity. Large o implies rapid spreading of
energy and a tendency toward spatial uniformity, while small
a produces strong gradients and surface localization. In the
extreme low-a limit, the problem effectively reduces to one
of boundary heating, with negligible penetration into the bulk.
Consequently, the observed results represent two asymptotic
regimes: efficient coupling at high diffusivity and decoupled
shell-core behavior at low diffusivity.

The role of flux must be considered alongside diffusivity.



Flux represents the input boundary condition as the rate of
energy deposition at the shell. For given «, flux sets the
scale of possible temperatures. Yet without sufficient «, this
energy cannot propagate inward, regardless of how high the
flux becomes. In fact, in the low-diffusivity regime, increasing
flux only exacerbates the surface-core disparity and drives the
shell to extreme temperatures while leaving the core largely
unaffected.

From a broader perspective, the results highlight general,
important implications for ICF capsule design. First, they state
that thermal transport is a limiting factor in energy coupling.
Low-diffusivity materials decouple the fuel core from the drive,
wasting laser energy in extreme surface heating.

A further implication concerns scaling with laser power. In
the favorable high-a regime, both shell and core temperatures
scale smoothly with flux. However, the data also demonstrate
that in unfavorable transport regimes, no amount of additional
flux will compensate for poor conduction.

Altogether, the results point to four distinct heating
regimes. In the case of high o and low flux, modest but uniform
heating occurs, with both shell and core rising together at a
limited scale. With high o and high flux, strong heating of
both shell and core takes place, which is the most favorable
regime for succcessful ICF experiments. With low « and
low flux, heating is minimal overall, and both shell and core
remain near baseline. Finally, with low « and high flux, the
shell experiences extreme overheating while the core remains
nearly cold. While the present analysis focuses on diffusive
transport, it is worth noting that real ICF capsules experience
a vast amount of additional complexities, including radiative
transport, hydrodynamic instabilities, and material ablation.
These effects may alter the precise quantitative outcomes.

B. Computational Scaling

To test the parallelization strategy, I perform a strong scal-
ing study of our method. Fig. 6 illustrates how the execution
time of the fixed-size problem decreases as the number of
processing units increases. For this study, a problem size of
1000 cells for 1000 timesteps was considered. In an ideal
scenario, doubling the number of processors would halve the
runtime, producing a linear scaling curve. However, in practice,
parallel performance is often limited by the fraction of code
that remains inherently serial, as described by Amdahl’s Law
[1]. By obtaining the serial fraction of the algorithm, a direct
comparison to the ideal scaling is made. Initially, for a small
number of threads, the actual speedup closely follows the ideal
trend, indicating efficient utilization of parallel resources. As
the thread count increases, the curve begins to flatten, revealing
diminishing returns due to communication overhead among
threads. Ultimately, this overhead becomes so dominant that it
degrades the performance significantly. Notably, the plot also
shows the performance when using a GPU. A single GPU
cannot outperform an increasing number of threads. This is
due to the memory transfers associated with hybrid CPU-
GPU computations [2]. For the considered problem size, the
memory transfer far outweighs any performance gains. These
results were obtained on MIT’s Engaging cluster, which houses
NVIDIA Volta GPUs and AMD EPYC 9734 CPUs.
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Fig. 6. Laser impeding a capsule. Image generated using Al

IV. GAUSSIAN PROCESS REGRESSION OF THE
TEMPERATURE

To quantify the uncertainty in the data presented in the
previous section, I design a Gaussian process (GP). The dataset
under consideration consists of measurements of the outer
ablator temperature, Ty, as a function of two input variables,
« and flux. Initially, the data is transformed using a logarithm
to reduce the dynamic range that spans multiple orders of
magnitude. Specifically, the inputs @ and flux were converted
to log(a) and log(flux), and the output Ty, was transformed
to 1og(Tihen). This log transformation is beneficial for GP
modeling, which assumes a roughly Gaussian distribution of
the target variable.

To ensure numerical stability and comparable scaling
across the input dimensions, the log-transformed inputs are
normalized to the unit interval [0, 1] using the standard min-
max normalization X,om = % This step is crucial in
Gaussian process regression, as the covariance kernel relies
on relative distances between points. Unscaled inputs with
disparate ranges can lead to poorly conditioned covariance

matrices and suboptimal hyperparameter optimization [3].

A two-dimensional Gaussian process regressor is then con-
structed using a radial basis function (RBF) kernel combined
with a white noise kernel. The RBF kernel encodes a smooth-
ness prior, assuming that points closer together in the normal-
ized input space yield similar outputs. The white noise kernel
models uncorrelated observational noise, capturing inherent
measurement uncertainty. The GP hyperparameters, including
the length scales of the RBF kernel and the noise level, are
optimized automatically through maximum likelihood.

Predictions are made on a dense grid spanning the range of
the original inputs, after log-transformation and normalization.
The GP provides both a mean prediction and a standard
deviation. The predicted log(Ten) is transformed back to
the original linear scale via exponentiation. The standard
deviation is normalized relative to the local mean using

€. g) —€ o . . . .
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og




measure of relative uncertainty. This normalization ensures that
the uncertainty is interpretable across regions of widely varying
temperature magnitude.
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The GP predicts a mean and its uncertainty in form
of standard deviation across the provided data points. For
instance, Fig. 7 shows the one-dimensional temeprature fit of
varying « for a constant flux. To span the entire dataset, the
input to the GP is expanded to be two-dimensional (o & flux).

The resulting GP is trained using an anisotropic
squared—exponential kernel with an additional white noise
term. After optimization of the hyperparameters by maximiz-
ing the log—marginal likelihood, the resulting kernel is

_ )2 )2
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202 202 :
®)

with characteristic length scales /1 =~ 0.52 and ¢y ~ 0.61, and
a noise variance o2 ~ 3.2-107°. The anisotropic length scales
indicate that the model accounts for different sensitivities in
the two input directions, while the very small noise variance
reflects the near—deterministic character of the data.

The moderate values of the optimized length scales suggest
that the Gaussian process captures local variations in the
response surface without overfitting to spurious fluctuations.
In particular, variations along the first dimension are resolved
at a slightly finer scale compared to the second, indicating that
the model attributes somewhat greater importance to changes
in the first input variable. The negligible noise variance empha-
sizes that the uncertainty in the posterior predictions is driven
primarily by the distance to training points rather than by
observational noise, which is consistent with the deterministic
nature of the underlying simulations.

The resulting contour plot of the mean temperature pre-
dicted by the GP is shown in Figure 8. It reveals a smooth de-
pendence on both « and flux. Training points are concentrated
in specific regions, and the GP naturally interpolates across
sparsely sampled areas. The logarithmic color scaling high-
lights orders-of-magnitude variations in 7Ty, demonstrating
that higher flux generally correlates with higher temperatures,
while the dependence on « is less steep but still significant.
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More importantly, Figure 9 shows the uncertainty asso-
ciated with each region in the dataset. It shows regions of
high confidence in the center of the domain. Regions far from
training points, such as the boundaries, exhibit dramatically
higher normalized standard deviations, reflecting the GP’s
conservative extrapolation behavior. Regions in the corners of
the domain, where neighboring points are fewer, also exhibit
higher uncertainties.

In summary, the Gaussian process regression captures
both the central tendency and uncertainty of Ty, across the
input space. The log transformation, input normalization, and
relative standard deviation scaling are key steps that enhance
numerical stability, interpretability, and visualization of pre-
dictive uncertainty. These results provide both quantitative
predictions and qualitative insights into the dependence of the
ablator temperature on material and flux parameters.



V. NEURAL NETWORK MODELING OF HEAT EQUATION
BEHAVIOR

A. Background and Architecture

To approximate the mapping between the input parameters
of the physical system (the thermal diffusivity a and flux)
and the output temperature response 7', a feedforward neural
network is developed using JAX. The neural network serves
as a nonlinear regression model capable of capturing the wide
dynamic range present in the data, where both inputs and
outputs span several orders of magnitude. To improve nu-
merical stability and facilitate training, the inputs and outputs
are transformed into logjg-space, and the input features are
standardized to zero mean and unit variance based on the
training set statistics.

The network architecture consists of one hidden layer
with five hidden units, chosen to balance the model’s per-
formance with the small dataset size. Figure 10 shows a
visual representation of the network. A sigmoid activation
function is used in the hidden layer to introduce nonlinearity.
The implementation also supports ReL.U activations, but it
was observed that sigmoid greatly outperformed ReLU, an
expected result for such a small dataset. The output layer is
linear, appropriate for regression tasks in transformed space.
Weight parameters are initialized with small random values
from a normal distribution, and L2 regularization is included
in the loss function to mitigate overfitting [4].
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Fig. 10. A fully connected neural network is used to learn the physical

behavior of the system.

The optimization is performed with the Adam optimizer,
which provides adaptive learning rates for each parameter and
improves convergence stability compared to gradient descent.
A learning rate of 0.01 was used, and the network was trained
for 5000 epochs.

B. Connection to the Physical Problem

The underlying physical problem is governed by the heat
equation, where the temperature response depends on both
material properties (represented by «) and the applied flux.
Analytically, these dependencies are complex, involving non-
linear interactions and strong scaling behaviors across orders
of magnitude. The neural network architecture is chosen to
approximate this nonlinear functional relationship without re-
quiring explicit assumptions about the form of the governing
equations.

The use of a logarithmic transformation, similar to the GP
regression highlighted in the previous section, is particularly
well aligned with the physics of the problem. Since both
inputs and outputs vary exponentially with respect to system
parameters, mapping them into log-space stabilizes training.
The training dataset consisted of 36 samples spanning a wide
range of o and flux values. A split of 80% training and 20%
validation data was used, ensuring that validation loss provided
an estimate of generalization performance.

C. Results and Loss Interpretation
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Fig. 11. Training and validation loss of the neural network.

To judge how well the model learned the underlying
phenomena of the physical problem, Figure 11 shows the
training and validation loss of the neural network. The model
achieved a final training mean squared error (MSE) of 0.055
and a validation MSE of 0.59, both computed in log-space.
Since the predictions and targets were represented in logig-
space, the MSE corresponds to squared errors in orders of
magnitude. For example, an MSE of 0.055 indicates that, on
average, the model predictions differ from the true target by
roughly +/0.055 =~ 0.23 log-units, or about 70% relative error
in the original scale.

The substantially higher validation loss compared to train-
ing loss suggests that while the model has learned the dominant
nonlinear trends in the training data, there is still a gap in its
ability to generalize across the entire parameter domain. This
discrepancy is expected given the limited dataset size and the
wide dynamic range of the outputs. A variety of parameters



were tested to assess their importance, including number of
hidden layers and number of hidden nodes. To truly improve
the performance, more data points are required.

D. Model Evaluation on Test Data

After training the neural network on the given dataset, the
learned parameters (w = Wi, W3) can be directly applied to
new, unseen input data. The test inputs, denoted as (Xies),
are passed through the trained network to obtain predictions
Yiest = fu(Xiest). This procedure does not involve any gradient
updates, as the model weights are frozen after training. The
relative error between the predictions (Yis) and the ground
truth labels (Yiest) serves as the primary evaluation metric:
€rel,i = %

Consulting the uncertainty regions obtained in Fig. 9, test
data points are deliberately chosen to cover both regions of
high confidence as well as low confidence. For the high
confidence region, inputs near the center of Fig. 9 are elected.
For low confidence regions, the four gold-shaded corners
within the red domain are chosen.

E. Discussion of Training Loss

The inputs are provided to both the neural network as well
as the discretized heat equation. Table I presents the chosen
input parameters for thermal diffusivity a and heat flux. The
relative error between the neural network predictions and the
reference partial differential equation solutions is also given.
The results illustrate how the accuracy of the NN depends

TABLE 1. RELATIVE ERROR BETWEEN PDE SOLUTION AND NN
PREDICTION FOR DIFFERENT INPUT PARAMETERS.

@ Flux Relative Error
5.0-10"° 5.0-10° 0.3313
5.0-107% 5.0-10° 0.7829
5.0-107% 5.0-10' 0.7986
5.0-1077  5.0-102 0.2042
5.0-107° 5.0-10? 1.3559
5.0-107% 5.0-10° 0.1643
5.0-107% 5.0-10* 0.9101
5.0-10"% 5.0-10° 0.2363
5.0-10* 5.0-10% 0.0780

on the operating regime of the system. For moderate values
of a and flux (e.g., o = 5.0 - 1076 with flux = 5.0 - 103),
the relative error is reasonably small (0.3313), suggesting that
the NN captures the dominant physical behavior. However, for
other cases such as a = 5.0 - 107° with flux = 5.0 - 102,
the error rises above unity (1.3559), indicating a substantial
deviation from the PDE solution. Interestingly, the lowest error
(0.0780) occurs at the extreme condition of o = 5.0-10~* and
flux = 5.0 - 10%. Conversely, large discrepancies at lower flux
levels highlight potential limitations in training coverage or
sensitivity of the underlying physics. Interestingly, no general
connection between accuracy and uncertainty is observed. The
first five data points in Table I were selected from a high-
confidence region, while the last four points were sampled
from a low-confidence region.

VI. CONCLUSION

In this work, I developed a comprehensive computational
framework for modeling and analyzing laser-driven thermal

transport processes. The approach combined several key com-
ponents, including the design and implementation of a multi-
threaded and GPU-accelerated solver for partial differential
equations describing the underlying physics, the integration
of uncertainty quantification via Gaussian process regression,
and the training of a neural network on simulation data to
serve as a fast surrogate model. Together, these components
enable both high-fidelity simulations and efficient predictive
capabilities.

The developed framework provides a foundation for future
applications in materials design and process optimization.
Specifically, the combination of physics-based modeling, un-
certainty quantification, and machine learning opens the pos-
sibility of systematically exploring material responses under
varying laser heat flux conditions. By coupling the surrogate
neural network with optimization routines, one can identify
material properties or operating parameters that maximize de-
sired performance metrics, such as thermal stability or energy
efficiency, under prescribed laser conditions. This paves the
way toward data-driven material optimization and adaptive
design in laser-based manufacturing and related technologies.

All data and source code used in this work are openly
available on Github.
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